Изготовление пенопласта: Технология производства пенопласта | Delo1

Содержание

Технология производства пенопласта | Delo1

 

Пенопласт полистирольный ГОСТ 15588-86 (скачать 102К)

Пенополистирол — белое однородное вещество, имеющее структуру из склеенных между собой шариков, упругое на ощупь, не имеет запаха, является отличным тепло — звуко изолятором. 
ПЕНОПОЛИСТИРОЛ — экологически чистый, нетоксичный, тепло- и звукоизоляционный материал, применяемый в строительстве на протяжении уже более 60 лет. 
Пенополистирол является нейтральным материалом, не выделяющим никаких вредных для человека и его окружения веществ, не подвержен разложению под воздействием микроорганизмов и не имеет ограниченного срока годности (100 лет минимум). 


Пенополистирол производят в огнестойком (самозатухающем) исполнении.

Горючесть пенополистирола по ГОСТ 15588-86
1.
 Начало процесса усадки пенополистирола

85 — 90°C 

2. Начало плавления

240°C  

3. Начало процесса термодеструкции пенополистирола с выделением газообразных продуктов280-290°C 
4. Температура возможного воспламенения пенополистирола360-380°C

Влага не влияет на теплоизолирующие свойства этого материала и не вызывает образование в нем бактерий и плесени, что позволяет широко использовать пенополистирол также и в пищевой промышленности. 


Пенополистирол отлично переносит присутствие асфальтовых эмульсий, рубероида с асфальтовым покрытием, цемента, гипса, извести, воды и всякого рода грунтовых вод. Температура окружающей среды не оказывает отрицательного влияния на физические и химические свойства 

пенополистирола


Пенополистирол очень хорошо «держит» тепло. Закладка пенополистирола  в наружные стены жилых домов позволяет в несколько раз снизить теплопотери. 12 см пенопласта соответствуют по своей теплопроводности: 50см дерева, 180см  кирпича, 4м бетона!

 

Пенопласт (пенополистирол) применяется:

Для тепловой изоляции в качестве среднего слоя ограждающих конструкций при утеплении жилых домов, складов, гаражей, дач, при текущем и капитальном ремонте жилых и производственных зданий и сооружений, при строительстве ангаров, боксов, крытых площадок. Пенополистирол также незаменим при утеплении трубопроводов, овощехранилищ, промышленных холодильниках, транспортных вагонах, автофургонов,  для упаковки продукции при транспортировке, для теплоизоляции наклонной кровли.

 

 

Технология производства пенопласта разделяется на следующие этапы:

1. Вспенивание (однократное или многократное).  
Гранулы ПСВ попадая в камеру предвспенивателя, вспениваются (надуваются) превращаясь во всем хорошо знакомые шарики. При многократном вспенивании уже вспененные гранулы подаются еще раз в камеру предвспенивателя, где они еще больше увеличиваются в размере (надуваются).

Многократное вспенивание нужно, если Вам необходимо получить пенопласт низкой плотности. Например, для пенопласта с фактическим весом 12 кг, достаточно однократного вспенивания, а если нужен пенопласт с фактическим весом ниже 12 кг, то потребуется вспенивать гранулы дважды или трижды. Причем перед каждым вторичным вспениванием гранулы должны вылежаться 12 — 24 часа в бункере вылеживания.

 

2. Вылеживание. 
После вспенивания гранулы подаются пневмотранспортом в бункер вылеживания. В бункере гранулы должны находиться 12 — 24 часа. За это время происходит стабилизация давления внутри гранул, плюс они попросту высыхают (из камеры предвспенивателя гранулы выходят влажными, а иногда и вовсе мокрыми).

 

3. Формовка.  
После бункера вылеживания гранулы засыпаются в блок форму, где под действием пара происходит формовка блока пенопласта. Расширяясь в замкнутом пространстве, шарики пенопласта «склеиваются» между собой образуя монолитный блок.

 

4. Резка. 
После того, как блок пенопласта  достали из формы его необходимо выдержать не менее суток, перед тем как резать. Это обусловлено тем, что блок пенопласта выходит из блок-формы, как и гранулы из предвспенивателя, влажным, а иногда и просто мокрым. Если же резать мокрый блок пенопласта, то рез получится «рваным» и чрезвычайно неровным. Высушенный блок пенопласта режется по горизонтали или по вертикали на станке для резки пенопласта. Толщина реза пенопласта в среднем 1 мм.  
 

Упрощенная технологическая схема производства пенопласта.

 

Исходные материалы и ресурсы для производства пенопласта:  
— полистирол суспензионный вспенивающийся типа ПСВ-С  
— вода  
— электроэнергия  
— пар (парогенератор может быть электрическим, газовым или дизельным)

               Схема химических процессов производства пенополистирола               

 

 

Производство пенопласта — безотходное: весь некондиционный материал дробится и добавляется к предварительно вспененному полистирольному грануляту перед формованием его в блоки пенопласта  в количестве 5-10% от свежего сырья.

Для лучшего представления о технологии производства пенополистирола Вы можете посмотреть видео ролик.

Как делают пенопласт (технология изготовления, производство пенополистирола)

Рассмотрены все этапы технологии производства пенопласта. Перечислено оборудование, необходимое для изготовления этого материала. Даны рекомендации, с которыми нужно обязательно ознакомиться перед покупкой.


Многие из нас не раз встречали пенополистирол, пробовали его на ощупь, что-то изготавливали из него, использовали его в строительстве, для обустройства дома. Однако далеко не все знают, какова технология изготовления пенопласта, каковы ее особенности.

Как ни странно, но в производстве этого материала нет ничего сверхсложного. И примечательно то, что сейчас на рынке появилось довольно много некачественного пенополистирола, который изготовлен без учета соответствующих норм и правил.

Некоторые умельцы умудряются создать небольшую производственную линию даже в обычном гараже. Да, не удивляйтесь.

И это нужно обязательно учитывать при покупке — не все Васи Пупкины строго придерживаются предписанных технологических норм. Да и какие нормы могут быть в гараже?

Итак…

Как изготавливают пенопласт

Ранее мы рассказывали, что такое пенополистирол. Помним, что этот материал состоит из многочисленных ячеек, заполненных воздухом. Значит — процесс изготовления должен включать вспенивание материала.

Так и есть: процесс вспенивания — один из важных в производстве пенополистирола.

Однако это еще не всё.

Рассмотрим:

Этапы технологии изготовления пенопласта

Обычно процесс включает в себя:

Теперь детальнее:

1. Вспенивание. В ходе выполнения этого процесса сырье помещают в специальную емкость (пенообразователь), где под действием давления (используется парогенератор) гранулы увеличиваются примерно в 20-50 раз. Операция выполняется в течение 5 минут. Когда гранулы достигают необходимого размера, оператор выключает парогенератор и выгружает вспененный материал из емкости.

2. Сушка полученных гранул. На данном этапе главная цель — удаление лишней влаги, оставшейся на гранулах. Делается это с помощью горячего воздуха — он направляется снизу вверх. При этом для лучшего просушивания гранулы встряхиваются. Этот процесс также длится недолго — около 5 минут.

3. Стабилизация (отлеживание). Гранулы помещают в бункеры, где и проходит процесс вылеживания. Продолжительность процесса — 4…12 часов (зависит от температуры окружающего воздуха, величины гранул).

Важное примечание: технология изготовления пенополистирола может исключать 2-й этап (сушку). В таком случае стабилизация (отлеживание) будет длиться дольше — до 24 часов.

4. Выпекание. Этот этап производства пенопласта часто называют формованием. Суть заключается в том, чтобы соединить между собой полученные ранее гранулы. Для этого они помещаются в специальную форму, после чего под давлением и под действием высокой температуры водяного пара проходит процесс спекания гранул. Длится примерно 10 минут.

5. Созревание (вылеживание). Цель — избавить полученные листы пенополистирола от лишней влаги, а также от оставшихся внутренних напряжений. Для этого листы располагают в свободном месте производственного цеха на несколько суток. В ряде случаев созревание может проходить до 30 суток.

6. Резка. Изготовленные блоки пенопласта кладут на спецстанок, на котором блоки разрезаются на листы соответствующей толщины, длины, ширины. Этот производственный процесс выполняется с помощью нихромовых струн, нагретых до определенной температуры. Соответственно, проводят как горизонтальную, так и вертикальную резку блоков.

Вот так делают пенопласт.

Разумеется, после перечисленных 6-ти этапов может выполняться 7-й этап — переработка оставшихся обрезков. В результате чего они смешиваются с другими гранулами, которые потом будут подвергаться тем же процессам — спеканию, вылеживанию…

Оборудование, которое используется в ходе производства пенополистирола, показано в виде таблицы:

Технология изготовления пенопласта напрямую влияет на качество

Как мы говорили выше, сейчас рынок наполнен немалым количеством низкокачественного материала. Его могут производить в гаражах, каких-то складских помещениях.

Но основная проблема заключается не в том, где изготавливают материал (хотя окружающая среда также влияет на качество), главная проблема — не соблюдение всех правил изготовления пенопласта.

Какие могут быть отклонения от правильного производства пенополистирола?

Самые различные — начиная от некачественной грануляции и заканчивая плохой, неточной нарезкой блоков пенопласта на листы.

Некоторые умники вообще не проводят как таковую стабилизацию, вылеживание. Для них важна исключительно скорость изготовления пенополистирола.

«Чем больше — тем лучше — больше денег заработаем!»

Из-за этого характеристики пенопласта сильно ухудшаются:

  • он может получиться хрупким, непрочным,
  • гранулы могут быть плохо соединены между собой,
  • плотность может быть неравномерной.

Это может также происходить из-за низкокачественного, неисправного оборудования, которое использовалось при производстве — вспениватели, сушильные установки, компрессоры, парогенераторы и т. д.

И еще немаловажный момент: при плохой технологии изготовления пенопласт может иметь резкий, неприятный запах. Возможна такая картина: привезли новенькие листы пенополистирола домой, уложили в гараж или другое помещение и… вскоре услышали, что помещение наполнилось каким-то едким, неприятным запахом.

Это очень плохо. Это значит, что пенопласт еще во всю «парит», выделяя вредные вещества. Особенно опасно, когда такой низкосортный материал складывается в жилых помещениях.

Выводы по изготовлению пенопласта

  1. Технология довольно проста, но требует обязательного соблюдения всех предписанных норм и правил.
  2. Материал (который внешне будет похож на качественный) можно получить даже при значительных отклонениях от правил производства. И этим пользуются «кустарные» фирмы (нехорошие люди).

Поэтому: покупайте только продукцию надежных, проверенных производителей (которые следят за качеством). Проверяйте наличие у продавцов соответствующих сертификатов качества.

Теперь вы знаете, как делают пенопласт, знаете основные особенности технологии изготовления и какому материалу нужно отдавать предпочтение. Успехов!

Технология производства пенопласта (пенополистирола) — ООО «ПК ВикРус»

Главная / Технология производства пенопласта (пенополистирола)

Содержание:

  1. Предварительное вспенивание гранул.
  2. Кондиционирование предварительно вспененных гранул.
  3. Формование пенополистирольных блоков.
  4. Кондиционирование пенополистирольных блоков.
  5. Разрезание пенополистирольных блоков на плиты.
  6. Использование пенополистирольных отходов.

1. ПРЕДВАРИТЕЛЬНОЕ ВСПЕНИВАНИЕ

1.1. Краткая характеристика сырья

В качестве сырья используется вспениваемый самозатухающий полистирол, содержащий 5-6% смеси пентана и изопентана, являющейся вспенивающим фактором. Эта смесь содержится в гранулах полистирола в растворенном виде.

Сырье имеет вид гранул, получаемых путем суспензионной полимеризации стирола. Оно содержит вещество, снижающее горючесть -антипирен.

После подогрева до температуры 90-100°С, под действием улетучивающегося пентана гранулы увеличивают свой объем (процесс вспенивания) примерно в 30-65 раз. В промышленной практике для вспенивания полистирола используется водяной пар, который проникает также внутрь гранул и способствует действию пентана.

Международное обозначение вспениваемого полистирола: EPS самозатухающий FS.

Хранение:

Хранить исключительно в заводской, плотно закрытой таре или контейнерах, установленных в проветриваемых помещениях или под навесом, далеко от источников тепла и огня. Рекомендуется хранить сырье при температуре, не превышающей 20°С.

Продукт, хранимый при рекомендуемой температуре, следует использовать не позднее 3-6 месяцев с даты исследования продукта, указанной в сертификате качества. Продукт из частично опорожненной или поврежденной тары следует использовать немедленно.

В производственных помещениях можно хранить сырье в количестве, не превышающем его среднесуточный расход.

1.2. Переработка вспениваемого полистирола .

Окончательная плотность готового продукта определена уже на этапе предварительного вспенивания.

Важным показателем является контроль давления при процессе вспенивания, для непрерывных предвспенивателей 0,015-0,03 МПа, для циклических 0,015-0,02 МПа.

 

Во вспенивателе два способа изменения мнимой плотности продукта:

  • путем изменения количества подаваемого сырья;
  • путем изменения уровня вспениваемого материала в рабочей камере;

Первый и второй способ оказывают влияние на время нахождения вспениваемого материала в рабочей камере. Третий способ влияет на температуру в камере.

Влияние времени нахождения сырья во вспенивателе на мнимую плотность продукта представлено на рис.1.2.

Если время нахождения сырья во вспенивателе слишком продолжительно, то гранулы начинают усаживаться и плотность растет; при слишком высокой температуре вспененные гранулы могут образовать комки. Оба эти явления могут происходить одновременно. И оказывать непосредственное влияние на качество конечного продукта.

Плотность

 

Продолжительность предварительного вспенивания

Рис.1.2. Зависимость между мнимой плотностью и продолжительностью вспенивания

С целью получения низкой плотности (< 12 кг/м3) применяют двухступенчатое вспенивание. Двухступенчатое вспенивание проводят с помощью того же самого оборудования, которое используется для одноступенчатого вспенивания, с подачей предварительно вспененного сырья через систему вторичного вспенивания.

С целью достижения оптимальных результатов вспенивания гранулы перед вспениванием второй ступени должны быть насыщены воздухом (процесс кондиционирования).

Предварительно вспененные гранулы поступают в сушилку с кипящим слоем, в которой теплый воздух (темп. примерно 30-40°С) проходит через перфорированное днище сушилки, сушит и продвигает гранулы в направлении выгрузочного вентилятора.

Воздушная струя должна распределяться таким образом, чтобы процесс сушки и перемещения гранул протекал равномерно по всей длине сушилки (регулировка осуществляется с помощью заслонок в воздушных камерах сушилки).

Одним из чрезвычайно важных факторов, оказывающих влияние на вспенивание полистирола, является продолжительность хранения сырья. Чем старше сырье, тем продолжительнее вспенивание и тем труднее достичь требуемой мнимой плотности вспененных гранул. Поэтому срок хранения сырья в герметичной упаковке ограничен до шести месяцев.

1.3. Техническое оснащение узла предварительного вспенивания

a) вспениватель ВП-03

b) система вторичного вспенивания СВВ-1

c) поточная сушилка гранул СС-106

d) выгрузочный вентилятор ВПВ-2,5

2. КОНДИЦИОНИРОВАНИЕ ПРЕДВАРИТЕЛЬНО ВСПЕНЕННЫХ ГРАНУЛ

2.1. Основы процесса кондиционирования гранул

В ходе кондиционирования воздух проникает внутрь вспененных гранул вследствие образовавшегося в них вакуума, а из вспененных гранул в атмосферу выпускается влага в виде пара и пентан, не прореагировавшие остатки процесса полимеризации сырья. Указанный газообмен возможен благодаря газопроницаемости полистироловых оболочек.

Рис.2.1. Гранулы вспениваемого полистирола в процессе кондиционирования

 

Скорость диффузии воздуха внутрь гранул обусловлена, главным образом, мнимой плотностью, температурой окружающей среды и размером гранул. Целью удаления влаги с поверхности гранул в сушилке с кипящим слоем является получение 100% мнимой поверхности, через которую осуществляется газообмен.

Скорость испарения пентана также зависит от плотности, температуры окружающей среды и размера гранул. Из крупных гранул пентан испаряется медленнее, чем из гранул малого диаметра, что обусловлено соотношением между поверхностью гранулы и ее массой.

2.2. Техническое оснащение узла кондиционирования гранул

Силосы, используемые для кондиционирования вспененных гранул, изготовляются в виде легкой металлической конструкции стеллажного типа с контейнерами из ткани, пропускающей воздух.

При перемещении вспененных гранул с помощью струи воздуха, на поверхности гранул накапливаются сильные электростатические заряды. Поэтому чрезвычайно важно тщательно заземлить все металлические элементы силосов, транспортных трубопроводов и остального оборудования.

2.3. Параметры кондиционирования гранул

Температура окружающей среды в цехе кондиционирования гранул не должна быть ниже 15°С, при более низкой температуре продолжительность кондиционирования увеличивается. В летний период, при температуре свыше 20°С время кондиционирования сокращают, а при более низких температурах — продлевают.

При транспортировке свежих гранул в силосы, их мнимая плотность увеличивается в результате столкновений со стенками трубопровода. Поэтому при установке параметров вспенивания необходимо учитывать увеличение плотности при транспортировке.

3. ФОРМОВАНИЕ ПЕНОПОЛИСТИРОЛЬНЫХ БЛОКОВ

3.1. Характеристика процесса формования

При выработке блоков вспененные гранулы свободно засыпают в камеру формы до ее полного наполнения. Затем в форму подают насыщенный сухой водяной пар под давлением 0,2-0,4 МПа, что приводит к дальнейшему увеличению объема гранул. В связи с тем, что гранулы находятся в закрытой камере, сначала заполняется свободное пространство между ними, а затем гранулы сцепляются друг с другом.

Рис.3.1.1. Пример фазового цикла формования блоков без использования вакуума

1) наполнение 2) продувание 3) запаривание 4) охлаждение 5) расформовка

 

Рис.3.1.2. Пример фазового цикла формования блоков с использованием вакуума 
1) наполнение
2) вакуум
3) продувание
4) запаривание — рост
5) запаривание — выдержка
6) выпуск
7) вакуумное охлаждение
8) разгрузка

Важным фактором при запаривании блока является подача в камеру в свободное пространство между гранулами соответствующего количества пара в кратчайшее время. Для этого необходима соответствующая вентиляция (продувание), целью которой является удаление воздуха перед началом процесса запаривания. Недостаточная продолжительность продувания приводит к неоднородной плотности и плохому спеканию блока.

Важно также поддерживать постоянную высокую температуру формы, в противном случае значительно растет расход пара (рис.3.1.3) и пар становится мокрым, что снижает качество сцепления гранул.

Рис.3.1.3. Примерный расход пара в зависимости от температуры формыДавление, которое блок оказывает на внутренние стенки формовочной камеры, составляет примерно 0,08 МПа. Для того, чтобы блок можно было вынуть из формы без его повреждения, это давление необходимо уменьшить до величины около 0,01 МПа. Время, необходимое для уменьшения давления блока, то есть время охлаждения, зависит от марки пенопласта.   Рис.3.1.4. Примерное время охлаждения блока в зависимости от продолжительности кондиционированияВ фазе продувания и охлаждения применяется вакуум с целью интенсификации процесса запаривания и ускорения процесса охлаждения.

3.2. Техническое оснащение узла формования

a) блок форма УЦИП 1030.

b) установка вакуумирования ВУ-3,3 с аккумулятором вакуума АВ-1.

c) система вакуумной загрузки и охлаждения блоков.

d) компрессорная установка СБ4/Ф-500

e) аккумулятор пара ПН-5000

f) котел паровой

 

4. КОНДИЦИОНИРОВАНИЕ БЛОКОВ

4.1. Краткая характеристика процесса кондиционирования блоков

 

После окончания процесса формования блоки кондиционируют. Кондиционирование проводится с целью снижения влажности и устранения внутренних напряжений, возникающих при формовании. Кроме того, при этом протекают процессы диффузии газов и выравнивания давления внутри гранул с атмосферным давлением, подобные процессам, происходящим при кондиционировании предварительно вспененных гранул.

В процессе кондиционирования блоков очень важную роль играет очередность их использования, соответствующая очередности формования, то есть при отборе блоков для разрезания следует начинать с самых «старых».

5. РАЗРЕЗАНИЕ ПЕНОПОЛИСТИРОЛОВЫХ БЛОКОВ НА ПЛИТЫ

5.1. Характеристика процесса резки пенополистирола

Разрезание блоков осуществляется с помощью реостатной проволоки, нагретой до соответсвующей температуры.

Все отходы подаются в измельчитель, откуда в измельченном виде пневматически транспортируются на вторичное использование.

5.2. Требования по качеству

Внешний вид

Окраска пенополистироловых плит должна быть такой же, как окраска предварительно вспененных гранул полистирола.

Необходимо проводить выборочную проверку плит — по крайней мере 2 шт. на длине каждого блока.

Если плиты отвечают предъявляемым требованиям, то после укладки в стопки они направляются на упаковку.

Если отклонение от требуемых размеров превышает допустимую величину, то следует еще раз проверить по одной плите на всей длине блока, определить причину, произвести соответствующую корректировку промежутков между отрезками реостатной проволоки.

Проверить таким же образом размеры плит, полученных в результате разрезания следующего блока.

Плиты, которые не отвечают предъявляемым требованиям, направляются на вторичное использование.

6. ИСПОЛЬЗОВАНИЕ ПЕНОПОЛИСТИРОЛЬНЫХ ОТХОДОВ

Отходы используется вторично в производстве блоков.

6.1. Техническое оснащение узла

a) дробилка пенополистирольных отходов

b) технологический силос

6.2. Система измельчения

Устройство предназначено для измельчения пенополистироловых отходов, в результате чего получают крошку, используемую в качестве добавки к гранулам полистирола при производстве пенополистироловых блоков. Размеры получаемой таким образом крошки составляют до 15 мм.

 


Интересно? Оставьте закладку, что бы вернуться сюда позже!

 

Изготовление пенопласта в домашних условиях. Как сделать пенопласт

Каждый, кто устал от слова «кризис», кто желает начать работать на себя и увеличить свой личный капитал, сейчас задумывается о собственном производстве.

Каждый, кто устал от слова «кризис», кто желает начать работать на себя и увеличить свой личный капитал, сейчас задумывается о собственном производстве. Если ставки на спорт или игры в казино перестали приносить доход, способный удовлетворить потребности и желания, советуем: откройте свое дело и начните изготовлять пенопласт! Это принесет вам неплохую прибыль, но для внедрения идеи в жизнь, необходимо усвоить все нюансы производства, хитрости и тонкости настройки работы.

Итак, приступим: изготовление пенопласта в домашних условиях. Для начала вам необходим гранулированный вспенивающийся полистирол, сокращенное название которого – ПВС-С. Этот строительный материал на первом этапе необходимо тщательно вспенить, после чего обработать паром при помощи воздействия высокой температуры (95-98? С). Продолжать, пока насыпная плотность не станет на уровне 18-35кг/м3. Еще одно вспенивание позволит установить уровень насыпной плотности гранул ПВС-С ниже уровня 15-18кг/м3. Процесс повторного вспенивания составляет второй этап изготовления пенопласта. На поверхности гранул ПВС-С могут образоваться капли влаги, это результат первых двух этапов обработки. Суть третьей части производства состоит в том, чтобы при помощи специальной сушки убрать влагу из поверхности материала. После этого будущий пенопласт необходимо положить на воздух и дать возможность гранулам заполнить свое безвоздушное пространство. На этот процесс может уйти от получаса до 6 суток.

Дело в том, что скорость заполнения материала воздухом, а также уравновешения давления между гранулами и внешней средой, зависит от насыпной плотности. Теперь осталось только склеить высушенные гранулы, поместив их в контейнер, имеющий нужную форму. Предварительно его смазывают специальной эмульсией для лучшего склеивания материала, обрабатывают паром и оставляют остывать. Пенопласт готов. Можно приступать к нарезке материала, которая бывает как горизонтальной, так и фигурной. Но советуем строго следовать технологическим условиям, так как излишняя спешка может повредить пенопласт (для риска есть тотализатор). Температура в помещении, где хранится материал, не должна быть выше 18 градусов тепла, а инструмент для резки – профессиональным и подходящим именно для этого вида работ.

Как сделать пенопласт в домашних условиях

Сделать пенопласт можно сделать и в домашних условиях. Но процесс этот все-таки не безопасный, поэтому заняться этим лучше в условиях мастерской, и запастись всем необходимым оборудованием заранее.
Вам понадобится

Полистирол (шарики), специальное оборудование.

Инструкция

1 Чтобы сделать пенопласт необходимо достать очень много маленьких шариков полистирола. Эти шарики очень маленькие, поэтому в народе их иногда называют бисером. Затем эти шарики необходимо раздуть и склеить между собой.

2 Для склейки шариков полистирола между собой их нужно нагреть очень горячим паром. Нагревание производится до тех пор, пока полистирольные шарики не начнут раздуваться. Когда шарики раздуются, из них начнет выделяться газ, который подтолкнет шарики друг к другу. После этого они слипнутся и примут форму той емкости, в которой находятся.

3 После остывания образовавшейся массы пенопласт можно считать приготовленным. Однако, качество такого самодельного пенопласта окажется весьма низким (если у вас вообще что-нибудь получится). Для производства настоящего пенопласта необходимо специальное оборудование, способное обеспечить весь технологический цикл. Кроме того, эксперименты в домашних условиях с такими высокими температурами просто опасны как для здоровья, так и для самого дома.

4 Чтобы сделать карбамидный пенопласт нужно выполнить следующие действия. Приготовить для начала раствор.
Для этого в воде комнатной температуры разводится катализатор отверждения (КО) и пенообразователь (ПО). Запустите установку. Затем залить в соответствующие емкости смолу и пенообразующий раствор. Подать на вход установки сжатый воздух. Включить насосы подающие пенообразующий раствор и смолу. Открыть краны СМОЛА и РАСТВОР. Залить поступающую из рукава пеномассу в специальные, разборные формы. Нарежьте и просушите полученный пенопласт. Режется карбамидный пенопласт леской или струной. Время сушки составляет от 1 до 3 суток.

Оборудование для производства листового пенопласта (пенополистирола)

Рады предложить Вам комплексное решение, оборудование для производства пенопласта,  для выпуска листового пенопласта (пенополистирола). Наши заводы бывают разной производительности (от 20 м3 в смену) и степени автоматизации (от ручных до автоматических линий), что позволяет начать бизнес с разными инвестициями и максимально соответствовать составленному бизнес-плану. Толщина выпускаемого листового пенопласта от 10 до 500 мм, с шагом в 10 мм. Плотность пенопласта от 9 до 55 кг/м3, что позволяет выпускать все марки пенопласта соответственно ГОСТам.

Еще одной важной особенностью оборудования для производства пенопласта есть возможность увеличения производительности с помощью установки дополнительных узлов. Кроме этого, благодаря опыту наших инженеров проектировщиков, можно параллельно с выпуском пенопласта организовать выпуск любой другой продукции с пенополистирола (несъемная опалубка, термоблок, плиты перекрытия, упаковка, багет). Оборудование для производства пенопласта. Цена от 8600 дол США.

 Описание основных узлов

Вспениватель — узел предназначен для первичной обработки сырья (пенополистирола вспениваемого), обычно заводы комплектуются одним таким узлом, но разной продуктивности.

Пневмотранспорт — система вентиляторов и воздуховодов для транспортировки сырья между узлами, комплектуется под конкретный завод.

Бункер вылеживания — специальная емкость большого размера для промежуточного вылеживания сырья, комплектуется в зависимости от мощности производства.

Пресс-форма — машина для термического формирования пенополистирола, где сырье превращается в блок пенопласта. Машины бывают ручные, полуавтоматические и автоматические. Количество пресс-форм в комплекте зависит от количества производимого пенопласта.

Комплекс для резки — «стол» для резки пенопластового блока на листы заданного размера,в комплект входит два ручных или один полуавтоматический комплекс резки.

Дробилка — станок для размельчение обрезков и других отходов пенопласта, для повторной переработки.

Упаковщик — полуавтоматический или автоматический станок для упаковки листов пенопласта в пленку.

Требования к производственному помещению

Минимальный размер помещения 70 м2, кроме того следует выделить помещение под склад сырья и готовой продукции.

Высота потолка не меньше 3,7 метра.

Необходимо организовать подачу электроэнергии (380В, от 7кВТ).

Необходимо подать сжатый воздух (давление до 8 атмосфер, объем около 200 литров в минуту).

Необходимо организовать подачу сухого водяного пара (давление до 2 атмосфер, объем от 50 килограмм в час).

Бизнес план производства пенопласта с расчетами

Несмотря на появление новых материалов, производство пенопласта остаётся актуальным. Материал активно используют при строительстве и упаковке в Европе, США и в развивающихся странах Азии.

Почему пенопласт так популярен?

  • Функциональность. Пенопласт применяют в строительстве, торговле и судостроении для изготовления теплоизоляционного материала, упаковки или понтонов.
  • Стоимость. Пенопласт обладает высокими теплоизоляционными свойствами, но стоит дешевле.

Преимущества бизнеса по производству пенопласта:

  • Низкий порог входа;
  • Рынок сбыта;
  • Высокая маржинальность при правильно построенном сбыте;
  • Простой технологический процесс.

Ключевые риски бизнеса:

  • Непроработанный план продаж;
  • Удаленность предприятия от пунктов реализации, которая увеличит стоимость доставки;
  • Поломка оборудования.

Эти факторы могут стать причиной больших остатков на складе, остановить производство и сократить прибыль.

Общий объем производства пенопласта в мире составляет 25 млн тонн. Среднегодовой рост отрасли — 2,5-3,5%. В России, то годовой темп роста выше — 10%. Это связывают с высокими темпами строительства и ростом торговли.

Из-за высокой стоимости транспортировки, многие производители работают на крупных локальных рынках, поэтому основные конкуренты — небольшие региональные предприятия. Большая часть предприятий работает на Урале и в Сибири — в местах, где добывается сырье для изготовления пенопласта. Кроме того, здесь сосредоточено большое количество торговых и производственных предприятий.

Закупать сырье лучше на нефтехимических заводах или у оптовых поставщиков.

Для запуска производства нужны: инвестиции, цех, оборудование и 5 сотрудников. Работники будут производить порядка 60 м3 продукции в день.

Общая площадь производственного помещения — 250 м2. Из них 50 м3 необходимо выделить под склад. В помещении должны быть высокие потолки, вентиляция, водоснабжение и электричество.

Технология производства:

  • Гранулы загружают в предварительный вспениватель. Там, под воздействием пара, гранулы начинают вспениваться.
  • Затем гранулы отправляют в сушилку.
  • Высушенные гранулы загружают в бункер для дополнительной просушки и затем заполняют блок-формы. Формы выдерживают под давлением и охлаждают.
  • Готовые блоки разрезают на листы. Остатки помещают в дробилку для повторного производства.

ПРОМСТРОЙПЕНОПЛАСТ производство пенопласта, полистиролбетона и пленки

С 2001года является производителем пенопласта, полистиролбетона и пленки полиэтиленовой на отечественный рынок.

Наше производство реализует свою продукцию оптом и в розницу по доступной цене, выдерживая жесткую конкуренцию благодаря отменному качеству производимого товара. Мы следим за инновационными достижениями, оперативно внедряя их в собственное производство.

В нашем распоряжении современное качественное оборудование и опытные специалисты, досконально разбирающиеся в технологических особенностях процесса изготовления пенопласта. Наша продукция имеет сертификаты качества, что является гарантией соответствия изделий современным стандартам.

Области применения материалов, выпускаемых

ООО «ПРОМСТРОЙПЕНОПЛАСТ»

Производство пенопласта в Москве – это одно из основных направлений деятельности нашего предприятия. Благодаря доступной стоимости, долговечности, надежности и отменным технологическим параметрам этот материал стал довольно востребованным как в гражданском, так и в промышленном строительстве и не только. Спектр его использования очень широкий. Наиболее часто его применяют в судостроении, медицине, строительстве, торговле и при производстве товаров народного потребления. В дополнение ко всему, это экологически чистый продукт. В наш век энергосберегающих технологий это один из самых доступных, эффективных и недорогих теплоизоляционных материалов.Мы как производители пенопласта с многолетним опытом смело можем указать на ряд явных преимуществ данного товара. Это:

  • широкий спектр применения,
  • экологическая и пожарная безопасность,
  • снижение стоимости строительных работ,
  • гарантия высоких тепло- и звукоизоляционных характеристик,
  • простота и оперативность монтажных работ.

Надежный производитель пенопласта


Как видите, достоинств у такого материала множество. Но это все актуально только в том случае, когда речь идет о качественном товаре. Мы являемся надежным производителем пенопласта в Москве, гарантируя отменные технические показатели своей продукции. Стоимость нашей продукции минимальна в регионе, ведь мы работаем без переплат и дополнительных наценок. Высокий сервис и оперативность обработки заказов позволяют быстро реализовывать товар, без задержек и накладок.У нас можно купить пенопласт от производителя оптом, с максимальной выгодой для себя. Для данной категории покупателей, а также для постоянных заказчиков у нас действуют дополнительные скидки, размер которых определяется в каждом конкретном случае.

 

ПСК «БАФ-ИНЖИНИРИНГ»

МаркаРЕКОМЕНДАЦИИ ПО ПРИМЕНЕНИЮ ОТ:Цена,
руб/м3
Марка по ГОСТ 15588 2014Марка по ГОСТ 15588 1986ГОСТ 15588-2014 (приложение А)СТО 99617898-001-2017НАС
ППС 10-Р-А (ТУ)ПСБ-С-15В качестве ненагруженной тепловой изоляции в среднем слое трехслойных ограждающих конструкций— Стены с облицовкой из кирпича 1 — Стены с деревянным каркасом

— Мансардные крыши

— Чердачное каркасное перекрытие

— Полы на лагах по грунту над холодными подпольями

— Чердачные перекрытия с несущими железобетонными стенами

Самая экономичная марка для ремонта и строительства2350
ППС 12-Р-АОптимальный выбор сочетание цены и качества3400
ППС 14-Р-АЛучший выбор
для ненагружаемой теплоизоляции
3900
ППС 17-Р-АПСБ-С-25 (плотность пенопласта от 15 до 25 кг/куб. м)Для нагружаемой тепловой изоляции кровель, полов и других конструкций— Полы на лагах по грунту над холодными подпольями

— Крыши с несущими железобетон ными плитами

— Крыши с несущим профилированным настилом

Универсальный выбор и не только в этой группе4600
ППС 20-Р-АОптимальный выбор для нагружаемой теплоизоляции5400
ППС 23-Р-АЛучший выбор
для нагружаемой теплоизоляции
6000
ППС25-Р-АПСБ-С-35 (плотность пенопласта от 25,1 до 35 кг/куб.м)В качестве тепловой изоляции поверхностей, подвергаемых при эксплуатации воздействию значительных нагрузок (для полов и кровель, эксплуатируемых под пешеходной и автомобильной нагрузками, полов подвалов, фундаментов, нулевых и цокольных этажей зданий, гаражей, автостоянок, бассейнов, холодильных камер, искусственных катков и др. )— Цоколь здания

— крыши с несущими железобетонными плитами

— крыши с несущим профилированным настилом

— Полы по грунту

— Полы на перекрытии над неотапливаемым подвалом или проветриваемым подпольем

— Полы на междуэтажном перекрытии из железобетонных плит

— Полы холодильников

— Полы с обогревом

Лучший выбор
для прочной, влагостойкой теплоизоляции
6350
ППС30-Р-АПроффесиональный выбор для особопрочного пенопласта с низким водопоглащением7500
ППС35-Р-АПСБ-С-50 (плотность пенопласта от 35,1 до 50 кг/куб.м)Пенопласт для инженерных сооружений9000
ППС®SIP15-NORMA-Р-АПСБ-С-25Ф (плотность пенопласта от 15 до 25 кг/куб. м)Для утепления вертикальных ограждающих конструкций фасадными теплоизоляционными композиционными системами с наружными штукатурными слоями— Стены с защитно — декоративной штукатуркой

— Полы на лагах по грунту над холодными подполь- ями или подвалами

-СИП-Панели

Профессиональный выбор для производства СИП-Панелей и в мокрых фасадах- «Системах фасадных теплоизоляционных композиционных (СТФК)»4700
ППС16Ф-Р-А5000
ППС®SIP17-EXTRA-Р-А5200

Разработка одностадийного процесса производства пенопластовых древесностружечных плит с использованием жесткого пенополиуретана :: BioResources

Шалбафан А., Чайдарре К. К., Веллинг Дж. (2016). «Разработка одностадийного процесса производства пенопластовых древесностружечных плит с использованием жесткого пенополиуретана», BioRes. 11 (4), 9480-9495.
Реферат

Смоделированный одностадийный процесс был разработан для производства пенопластовых древесностружечных плит с использованием жесткого полиуретана в качестве внутреннего слоя.Результаты показали, что различные методы, используемые для разделения поверхностного слоя (несмолированные частицы и распыленная вода) и впрыскивания пены (открытая система и закрытая система), не влияли на характеристики панелей. На механические свойства (например, прочность на изгиб и прочность внутреннего сцепления) в основном влияла толщина поверхностного слоя, в то время как на водопоглощение и извлечение краевого винта влияла структура ячеек пены. Использование распыленной воды для отделения поверхностного слоя удвоило эмиссию формальдегида (FE) панелей.Добавление мочевины (из расчета 10% сухой смолы) к распыляемой воде имело положительный эффект снижения конечного FE. Более того, увеличение толщины поверхностного слоя имело прямую линейную связь с FE.


Скачать PDF
Полная статья

Разработка одностадийного процесса производства древесностружечных плит с пенопластом с использованием жесткого пенополиуретана

Али Шалбафан, a, * Камран Чупани Чайдарре, a и Йоханнес Веллинг b

Смоделированный одностадийный процесс был разработан для производства пенопластовых древесностружечных плит с использованием жесткого полиуретана в качестве внутреннего слоя.Результаты показали, что различные методы, используемые для разделения поверхностного слоя (несмолированные частицы и распыленная вода) и впрыскивания пены (открытая система и закрытая система), не влияли на характеристики панелей. Механические свойства (, например, прочность на изгиб и прочность внутренней связи) в основном зависели от толщины поверхностного слоя, в то время как на водопоглощение и отрыв краевого винта влияла структура ячеек пены. Использование распыленной воды для отделения поверхностного слоя удвоило эмиссию формальдегида (FE) панелей.Добавление мочевины (из расчета 10% сухой смолы) к распыляемой воде имело положительный эффект снижения конечного FE. Более того, увеличение толщины поверхностного слоя имело прямую линейную связь с FE.

Ключевое слово: ДСП; Легкий; Бутерброд; Полиуретан; Жесткая пена

Контактная информация: a: Кафедра науки и технологии древесины и бумаги, Факультет природных ресурсов и морских наук, Университет Тарбиат Модарес, Нур, Иран; b: Институт исследований древесины Тюнена, 21031 Гамбург, Германия; * Автор, ответственный за переписку: [email protected]

ВВЕДЕНИЕ

Многослойные конструкции демонстрируют многообещающие легкие характеристики для использования в морской и авиационной промышленности и используются на протяжении десятилетий (Gruenewald и др. .2015). Кроме того, легкие плиты значительно снижают общие выбросы парниковых газов (Feifel et al . 2013). Использование сэндвич-стратегии в мебельной промышленности не очень хорошо развито из-за трудоемких производственных методов, которые по-прежнему препятствуют широкому применению.Вторым важным этапом производства многослойных конструкций является соединение сборных обшивок и легкого внутреннего слоя. Основными методами производства (которые уже представлены на рынке) являются либо периодический процесс, когда предварительно изготовленные слои склеиваются и собираются вместе, либо процесс, при котором вспенивающая жидкость для формирования материала сердцевины вводится между двумя предварительно изготовленными лицевыми слоями ( Аллен 1969; Ли и др. .2014). Недостатками этих процессов являются отсутствие одновременного изготовления всех слоев вместе и некоторые ограничения в отношении технологий производства.

Среди всех процессов одностадийный процесс ( на месте, вспенивание) демонстрирует большой потенциал для упрощения производственного процесса, а также для соединения сэндвич-оболочек и сердцевины (Zenkert 1997). Луедтке (2011) и Шалбафан и др. . (2012) показали, что одностадийный процесс формирования многослойных структур имеет большой потенциал для производства легких вспененных древесностружечных плит. Характеристики материалов основного слоя, , например. , их термореактивная или термопластичная природа, создают проблемы в одностадийном производственном процессе.В случае термопластичных материалов внутреннее охлаждение для стабилизации панели необходимо на заключительной стадии производства пресса. Шалбафан и др. . (2012) отметили, что материалы внутреннего слоя должны иметь расширяемую твердую гранулированную форму для использования в одностадийном процессе производства пенопластовых древесностружечных плит. С другой стороны, использование термореактивных вспененных материалов в качестве материалов внутреннего слоя не требует внутреннего охлаждения, но такие материалы (расширяемые термореактивные твердые гранулы), которые отвечают требованиям одностадийного производственного процесса, еще не доступны на рынке.

Полиуретан (ПУ) — это полимер, состоящий из органических звеньев, соединенных уретановыми связями. Большинство используемых полиуретанов представляют собой термореактивные полимеры, которые не нужно охлаждать для стабилизации (Sonnenschein and Koonce 2012). ПУ обычно образуются в результате реакции между компонентами полиола (PO) и изоцианата (ISO) и имеют жидкую фазу перед вспениванием, что представляет проблему для вспенивания in situ . Различные пенополиуретаны (мягкие, эластомерные и жесткие) могут быть произведены в зависимости от типа полиолов, используемых для изготовления пенопласта (Ionescu 2005).Полиолы с числом ОН от 300 до 500 предпочтительно используются для изготовления жестких пенополиуретанов, которые представляют собой простые полиэфирполиолы и полиэфирполиолы. Жесткие пенополиуретаны могут изготавливаться с плотностью от 40 до 1000 кг / м 3 , в зависимости от их полиольной структуры. Более низкая плотность (<60 кг / м 3 ) подходит для изоляционных материалов, в то время как более высокая плотность (> 500 кг / м 3 ) подходит для декоративных применений (Ionescu 2005). Пенополиуретан высокой плотности может иметь отличные характеристики в различных областях применения, но эффект легкости, необходимый для многослойных структур, в этих пенах больше не существует.Чтобы получить легкие панели на древесной основе, средний слой должен иметь значительно меньшую плотность (<300 кг / м 3 ), чем обычные панели. Когда плотность внутреннего слоя ниже, достигается формирование более легких панелей. Смесь двух различных полиолов (используемых для изоляционных и декоративных целей) может обеспечить легкость конструкции и отличные характеристики пены.

В этом исследовании два разных полиола, один из которых обычно используется для изоляции, а другой — для декоративных целей, были смешаны вместе для достижения желаемой плотности пены и лучшей обрабатываемости.Целью данного исследования является производство древесностружечных плит из пенопласта в моделируемом одностадийном процессе (с учетом проблем, упомянутых выше) с использованием жесткого полиуретана в качестве внутреннего слоя. Для моделирования одноэтапного производственного процесса необходимо использовать методы разделения поверхностных слоев. Таким образом, были изучены эффекты различных методов, используемых для разделения поверхностного слоя и впрыска пены в смоделированном одностадийном процессе. Также были проанализированы механические и физические свойства изготовленных таким образом панелей.

ЭКСПЕРИМЕНТАЛЬНАЯ ИНФОРМАЦИЯ

Материалы

Обычные мелкие частицы древесины, в основном бука и тополя (≤ 2 мм), использовались для облицовочных слоев и поставлялись местным заводом по производству древесно-стружечных плит в Иране. Частицы смешивали со смолой на основе формальдегида мочевины (UF) (12%) (Amol Resin Ltd., Иран) и сульфатом аммония (1%) в качестве отвердителя. Смола UF имела содержание твердого вещества и pH 62% и 7,1 соответственно. Заданная плотность поверхностного и нижнего слоев поддерживалась постоянной на уровне 700 кг / м 3 . Толщина поверхностного слоя варьировалась (3, 4 и 5 мм для каждого из двух лицевых слоев), соответственно, изменялась и соответствующая плотность панели (300, 370 и 440 кг / м 3 ).

Смесь простого полиэфира (Kupa 501) и сложных полиэфирполиолов (Kupa 150) смешивали с полимерным метилендифенилдиизоцианатом (pMDI) для получения центрального слоя. Используемые химические вещества были поставлены компанией Jazb Setareh Co., Иран. Заданная плотность подготовленного внутреннего слоя поддерживалась постоянной на уровне 120 кг / м 3 .

Подготовка образца для испытаний

ДСП с пенопластом (толщиной 19 мм) были произведены в смоделированном одностадийном процессе, состоящем из четырех последовательных стадий. Панели были изготовлены с различной толщиной поверхностного слоя 3, 4 и 5 мм, и, соответственно, внутренний слой пенопласта варьировался по толщине 13, 11 и 9 мм соответственно. Процесс, использованный в этом исследовании, описан на рис. 1. В идеальном промышленном одностадийном производственном процессе используются четыре последовательных этапа: уплотнение поверхностного слоя, разделение поверхностного слоя, впрыскивание пены и стабилизация панели.Можно констатировать, что наиболее сложными этапами являются разделение поверхностного слоя и нагнетание пены. Следовательно, были применены различные методы разделения слоев и впрыска пены, чтобы определить их эффект на таких сложных этапах.

Рис. 1. Разработка технологии производства пенопластовых ДСП в промышленных масштабах

Иллюстрированный одностадийный производственный процесс (рис. 1) был сначала смоделирован в лабораторном масштабе.Для начала два поверхностных слоя (после смола частиц и формирования мата) уплотняли до отверждения УФ-смолы (в конце секции прессования). Затем поверхностные слои были разделены в лабораторном масштабе благодаря использованным методам разделения. После формирования нижнего слоя и перед формированием лицевого слоя применялись различные методы разделения с использованием либо несмолистых древесных частиц, либо метода распыления воды. Обычные мелкие несмолистые частицы древесины (400 г / м 2 ) использовали в качестве разделительного материала между двумя слоями.Количество распыленной воды поверх нижнего слоя составляло 60 г / м 2 , чтобы образовалась масса пара (на стадии подготовки поверхностных слоев) между двумя слоями для разделения слоев. Более высокое количество распыляемой воды могло бы повлиять на образование пены и связь между лицевыми и сердцевинными слоями. Следовательно, необходимо поддерживать как можно более низкий уровень распыляемой воды. Для удаления несмолистых древесных частиц или плохо связанных частиц между поверхностью и нижним слоем, после отделения поверхностного слоя, но до стадии впрыска пены, использовался отсос (пылесос).

На этапе впрыска пены также использовались два разных метода; Для этого использовался либо деревянный каркас (закрытая система), либо четыре небольших деревянных кубика (открытая система). Высота деревянного каркаса и деревянных кубиков была такой же, как толщина слоя пенопласта (13, 11 или 9 мм), и они располагались поверх нижнего слоя. Затем смесь компонентов пены впрыскивалась (заливалась) на нижний слой и, соответственно, поверх него сразу же укладывался верхний поверхностный слой.После этого вся сборка была помещена на второй пресс (без зон нагрева), чтобы сохранить желаемую толщину панели (стабилизация панели). Рисунок 2 иллюстрирует смоделированный одностадийный процесс производства пенопластовых панелей в лабораторном масштабе.

Таблица 1 показывает состав переменных панели. Чтобы подтвердить влияние методов разделения лицевого слоя на свойства панели, контрольные образцы (с использованием периодического процесса) также были изготовлены без каких-либо методов разделения (где каждый поверхностный слой был изготовлен отдельно).

Таблица 1. Технологии производства древесностружечных плит с пенопластом

* Не смолистые древесные частицы, используемые между нижним и поверхностным слоями.

** Распыляемая вода, используемая поверх нижнего слоя.

Составы пены

Полиол простого полиэфира на нефтяной основе (Kupa 501) и полиол сложного полиэфира (Kupa 150) использовали после определения их гидроксильного числа (450 мг КОН / г и 306 мг КОН / г, соответственно) и содержания воды (0.15% и 0,1% соответственно). Сводка типичных физических и химических свойств обоих полиолов (от поставщиков) приведена в таблице 2. Химические вещества: полимерный метилендифенилдиизоцианат (pMDI), кремниевое поверхностно-активное вещество — полисилоксановый эфир, катализатор — диметилциклогексиламин и вспенивающий агент — ГФУ R-141b использовался в полученном виде. Содержание групп NCO в pMDI составило 31% (согласно паспорту поставщика).

Таблица 2. Физико-химические свойства полиолов

* Ароматический полиэфирный полиол.

** Значения, проверенные экспериментально.

Таблица 3. Составы и реакционная способность жестких пенополиуретанов

Методика рецептуры жесткого пенополиуретана представлена ​​в Таблице 3. Он был приготовлен двухэтапным методом. Полиолы смешивали с катализатором, поверхностно-активным веществом и вспенивающим агентом для получения гомогенной смеси в соответствии с процедурой приготовления. Затем смесь полиолов смешивали с pMDI (приблизительно 10 с) перед инъекцией.Данные о реакционной способности жесткого пенополиуретана были получены в ходе «чашечного теста» и представлены в таблице 3 (Ionescu 2005).

Характеристики панелей

Чтобы охарактеризовать новые произведенные панели и изучить влияние различных методов разделения слоев и инъекции полиуретана, а также влияние толщины поверхностного слоя, были проведены механические и физические испытания. Прочность на изгиб (EN 310 (1993)), внутренняя прочность сцепления (EN 319 (1993)) и сопротивление выдергиванию торцевого / краевого винта (EN 13446 (2002)) были определены в качестве основных механических свойств. Физическое поведение (EN 317 (1993)) панелей было охарактеризовано путем измерения разбухания по толщине и тенденции водопоглощения после длительного выдерживания (до 786 ч после погружения в воду). Для каждого варианта панели готовили по три повтора. Три образца из каждой повторности ( n = 9) были отобраны и протестированы случайным образом. Перед испытанием все образцы кондиционировали в климатической камере при относительной влажности 65% и температуре 20 ° C до достижения постоянной массы. Физические испытания проводились на неотшлифованных образцах.

Измерение выбросов формальдегида

Чтобы лучше понять свойства этих новых древесностружечных плит из вспененного материала, было проведено испытание на выброс формальдегида. Влияние толщины поверхностного слоя и распыляемой воды (для разделения слоев) на выделение формальдегида панелями было исследовано с использованием колбового метода (EN717-3 (1996)). Раствор мочевины и воды использовался для распыления в качестве метода разделения поверхностного слоя для контроля эмиссии формальдегида. Количество использованной мочевины составляло приблизительно 10% в расчете на твердое содержание смолы в одном лицевом слое. Более подробная информация о вариантах панелей, используемых для выделения формальдегида, представлена ​​в таблице 4.

Таблица 4. Переменные панели , используемые для измерения выбросов формальдегида

* Каждый поверхностный слой изготавливали отдельно (контрольный образец).

** Для разделения поверхностных слоев использовали раствор мочевины и воды.

Статистический анализ

Двусторонний дисперсионный анализ (ANOVA) механических и физических свойств был выполнен с помощью статистического пакета для программного обеспечения социальных наук (программное обеспечение SPSS, IBM, США). Статистические различия между вариациями оценивались путем множественных сравнений на основе теста Дункана из-за однородности вариаций. Парный T-тест также использовался для сравнения различных значений методов разделения и закачки. Статистическая значимость была установлена ​​на уровне P <0.05.

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

Влияние методов разделения поверхностных слоев

Одним из наиболее важных этапов в разработке одностадийного процесса производства панелей с пенопластом является разделение поверхностного и нижнего слоев для впрыска пены. Влияние двух различных методов разделения (несмолистые частицы и распыленная вода) на значения прочности на изгиб (MOR) и внутренней связи (IB) представлены на рис. 3. Значения обоих свойств (MOR и IB) для не- Метод смолистых частиц был немного выше, чем метод распыления воды, но такие различия не были обнаружены статистически значимыми.На прочность на изгиб в основном влияли плотность панели и качество поверхностного слоя, которое было почти одинаковым для обоих типов панелей. На величину внутреннего сцепления в панелях с пенопластом влияло качество поверхности раздела (лицевой и сердцевинный слой) (Shalbafan и др. . 2013b). В случае метода распыления воды между поверхностным и нижним слоями образовывалась масса водяного пара, которая влияет на отверждение УФ-смолы на частицах, образующих внутренние стороны лицевых слоев.Слабые внутренние поверхности приводят к снижению значений прочности внутреннего сцепления. Кроме того, более высокое содержание влаги в мате (в случае распыления воды) может также привести к уменьшению сшивки клея и, соответственно, к ослаблению характеристик склеивания (Roffael 1993).

Рис. 3. Влияние методов разделения поверхностного слоя на прочность на изгиб и прочность внутреннего соединения

На рис.3. Результаты показали, что контрольные образцы имели значительно более высокие значения MOR и IB, чем образцы, полученные с помощью непрерывных процессов. Как упоминалось ранее, качество поверхностного слоя из-за более плотного поверхностного слоя было причиной более высоких значений MOR в контрольных образцах. Для изготовления контрольных образцов не использовалась методика разделения. Следовательно, отсутствие слабосвязанных частиц привело к лучшей адгезии с компонентами пены. Некоторые слабые и плохо связанные частицы всегда будут присутствовать на внутренних поверхностях слоев в случае несмолистых древесных частиц и методов разделения водяным распылением, которые влияют на значения внутреннего сцепления.Этих слабых частиц не было в контрольных образцах. Хотя эталонные образцы имели более высокие MOR и IB, чем у панелей с пенопластом, они не могут быть одобрены в мебельной промышленности из-за процесса серийного производства (Shalbafan и др. . 2013b).

Следует отметить, что минимальные требования к значениям IB согласно EN312 / P2 были достигнуты для всех вариантов панели. Хотя MOR почти на 30 процентов ниже, чем EN312 / P2 для панелей, произведенных с помощью разработанного одноэтапного процесса, он все еще находится в желаемом диапазоне для специальных применений.

Влияние методов разделения поверхностного слоя на извлечение торцевых винтов (FSW) и краевых винтов (ESW) представлено на рис. 4. Результаты показали, что методы разделения не оказали значительного влияния на FSW и ESW. На FSW влияло качество поверхностного слоя, которое было почти одинаковым для обоих методов. На ESW повлияли структуры пены, которые также были одинаковыми для обоих методов из-за схожего состава пены.

FSW контрольных образцов был значительно выше, чем у панелей, изготовленных с помощью одностадийного производственного процесса, поскольку они имели лучшее качество поверхности и нижнего слоя.ESW существенно не изменился на контрольных образцах, поскольку компоненты пены оставались постоянными во всех вариантах панели.

Рис. 4. Влияние техники разделения поверхностных слоев на извлечение торцевых и краевых винтов

Влияние методов впрыска пены

Два разных метода (закрытая и открытая системы) использовались для впрыска пены между разделенными слоями.Влияние методов впрыска на прочность на изгиб и значения внутренней связи показано на рис. 5. Результаты показали, что различные системы впрыска не влияют на прочность на изгиб и значения прочности внутреннего скрепления. Следует отметить, что впрыскиваемая (залитая) пенная смесь не выливалась со сторон образца в случае открытого впрыска из-за высокой вязкости и очень короткого времени вспенивания (25 с) пенной смеси. Кроме того, визуальные наблюдения показали, что смесь ПУ в основном перемещалась в направлении высоты (направлении подъема), а ее боковые перемещения были довольно низкими.Полимерный изоцианат (pMDI) добавляли только к смеси полиолов перед инъекцией. Смесь перемешивали примерно 10 с и сразу выливали поверх нижнего слоя. Сливание смеси происходило сразу после заливки (впрыска) пены, излияния пены не наблюдалось. В конечном итоге можно предположить, что системы впрыска пены не оказывают существенного влияния на процесс вспенивания и, соответственно, на свойства панели.

Фиг.5. Влияние технологий впрыска пены на значения прочности на изгиб и прочности внутреннего сцепления

На рис. 6 представлены результаты значений отвода торцевых и краевых винтов для панелей, изготовленных с использованием различных систем впрыска пены.

Рис. 6. Влияние техники впрыска пены на отвод торцевых и краевых винтов

Результаты показали, что значения FSW и ESW существенно не менялись при изменении систем впрыска пены.Значения торцевых винтов в основном зависят от качества поверхностных слоев, которое было одинаковым для обоих вариантов (Shalbafan и др. . 2013b). Значения краевого винта зависят от процедуры вспенивания и полученной структуры пены. Таким образом, можно сделать вывод, что структура пены в обеих системах впрыска практически одинакова, поскольку значения ESW были почти сопоставимы.

Влияние толщины слоя

Плотность панели и содержание влаги в панелях после двух недель кондиционирования (при 20 ° C и относительной влажности 65%) представлены в таблице 5. Толщина панели осталась неизменной (19 мм), а толщина поверхностного слоя увеличилась с 3 до 5 мм. Следовательно, плотность панели была увеличена за счет увеличения толщины поверхностного слоя с 3 (302 кг / м 3 ) до 5 мм (439 кг / м 3 ). Влагосодержание было выше в панелях с более толстыми поверхностными слоями, потому что в более толстых панелях содержится больше гигроскопичных материалов.

Таблица 5. Плотность панели и содержание влаги

* Цифры в скобках — стандартное отклонение

Влияние толщины поверхностного слоя на свойства панели (MOR и IB) показано на рис.7. Значения MOR незначительно увеличились с 9,5 МПа для панелей толщиной 3 мм до 10,5 МПа для поверхностных слоев панелей толщиной 5 мм. Толщина, плотность и структура каждого слоя пенопластовых панелей были наиболее важными факторами, влияющими на прочность на изгиб (Vinson 2005; Link et al .2011). Плотность панелей была увеличена за счет увеличения толщины поверхностного слоя с 3 мм (300 кг / м 3 ) до 5 мм (440 кг / м 3 ). Эта увеличенная плотность панели привела к увеличению прочности на изгиб.Также можно заметить, что древесина стала жестче и прочнее, чем материал полимерного сердечника. Утолщение поверхностных слоев сопровождалось уменьшением толщины внутреннего слоя пенопласта с 13 до 9 мм, и, соответственно, были получены более высокие значения MOR. Чен и Ян (2012) также обнаружили, что уменьшение отношения толщины сердцевины поверхностного слоя привело к увеличению изгибных свойств сэндвич-панелей.

Значения внутренней прочности связи снизились, когда толщина поверхностного слоя была увеличена с 3 мм (0.От 46 Н / мм 2 ) до 5 мм (0,17 Н / мм 2 ). Шалбафан и др. . (2012) отметили, что преобладающим фактором, влияющим на значения прочности внутреннего сцепления панелей с пенопластом, является качество поверхности раздела лицевой и сердцевинной части. Образцы, приготовленные с толщиной грани 3 мм, разрушились в лицевом слое в непосредственной близости от границы раздела, а для образцов с толщиной грани 5 мм разрушение произошло в середине поверхностных слоев. Как упоминалось ранее, масса водяного пара, образующаяся между поверхностным и нижним слоями, влияет на сшивание клея и, соответственно, дополнительно ослабляет характеристики склеивания в более толстых поверхностных слоях (Roffael 1993).

Рис. 7. Влияние толщины поверхностных слоев на прочность на изгиб и значения внутреннего сцепления

Значения отвода торцевых и краевых винтов для панелей с разной толщиной поверхностного слоя показаны на рис. 8. Результаты показали, что FSW линейно увеличивается с увеличением толщины поверхностного слоя. FSW увеличивается почти до 30% на каждый дополнительный миллиметр толщины поверхностного слоя.Значения извлечения краевого винта существенно не изменились, и значения ESW, безусловно, также зависели от состава пены, но они оставались постоянными для всех вариантов панели.

Рис. 8. Влияние толщины поверхностного слоя на отвод торцевых и краевых винтов

Влияние толщины поверхностного слоя на набухание толщины и водопоглощение при времени выдержки до 786 ч представлено на рис. 9. Значения набухания по толщине были выше для панелей с более толстыми поверхностными слоями. Значения TS почти достигают максимального уровня (от 5% до 7%) примерно через 48 часов замачивания. Впоследствии увеличение TS было значительно снижено до достижения 786 ч времени выдержки, в то время как TS существенно не изменилась. На TS панелей с пенопластом влияет толщина поверхностного слоя (Luedtke 2011). Похоже, что деревянные частицы были насыщены после короткого времени (48 часов) замачивания, и это состояние не меняется при продлении замачивания до 786 часов (Shalbafan et al .2013а). Следует также учитывать, что внутренний слой пенопласта не влияет на набухание по толщине из-за его гидрофобной природы.

На рис. 9В показаны значения водопоглощения панелей. Значения водопоглощения (WA) значительно увеличились при увеличении толщины лицевого слоя с 3 до 5 мм. Значения WA также неуклонно увеличивались для всех панелей во время замачивания (от 2 до 786 ч), но скорость поглощения воды изменялась во время погружения. Интенсивное впитывание можно наблюдать в течение начального периода замачивания (48 часов), а при более длительном времени замачивания (от 48 до 786 часов) наблюдается почти линейная тенденция.Большая часть воды (> 60%) была впитана в начальный период (48 ч) замачивания. На значения WA в панелях с пенопластом влияли поверхностный слой (толщина и плотность) и структура ячеек пены (пустоты между ячейками и раздробленные ячейки) (Sabbahi and Vergnaud 1993; Link et al .2011). Следовательно, сравнивая части A и B на фиг.9, можно констатировать, что поверхностные слои являются преобладающими факторами, влияющими на WA в течение начального периода выдержки (48 часов). Вода в основном поглощается как пустотами между ячейками пены, так и раздробленными ячейками при более длительном времени замачивания (от 48 до 786 ч).Также стоит отметить, что WA не прекращалась даже после 786 часов выдержки, что показывает, что вода медленно, но неуклонно проникает во внутренние пустоты образцов (Schwartz и др. , 1989).

Измерение выбросов формальдегида

Эмиссия формальдегида (FE) из панелей из пенопласта была определена колбовым методом, как показано на рис. 10. Результаты показали, что FE линейно увеличивается при увеличении толщины поверхностного слоя с 3 до 5 мм (коды C, D, и E).Каждый дополнительный миллиметр толщины поверхностного слоя приводит к увеличению FE на 19%. Более высокое количество древесных частиц и смолы, используемой для увеличения толщины поверхностного слоя, приводит к более высокому выбросу формальдегида (Петерсен и др. , 1972).

Использование методов отделения поверхностного слоя (, например, , распыление воды или несмолистые частицы) является одним из наиболее важных этапов производства в одноэтапном процессе изготовления панелей с пенопластом. Следовательно, чтобы понять влияние методов разделения (распыление воды) на FE, панель, полученная в результате одноэтапного процесса (код C), сравнивали с эталонной панелью (код F). Результаты показали, что КЭ панелей, изготовленных в смоделированном одноэтапном процессе, почти удвоился по сравнению с КЭ контрольных панелей. Причину этого можно увидеть в разбрызгиваемой воде (60 г / м 2 ), используемой для отделения поверхностного слоя. Петерсен и др. . (1972) заявили, что содержание влаги в мате из ДСП влияет на КЭ производимых панелей. Для контроля эмиссии формальдегида изготовленных панелей был применен раствор мочевины и воды (код K) для разделения поверхностного слоя.Сравнение кодов C и K показало, что добавление мочевины уменьшило вдвое (примерно на 50%) КЭ панелей, изготовленных в одностадийном производственном процессе. Мочевина является одним из наиболее эффективных и в то же время самых дешевых поглотителей формальдегида на рынке (Ashaari и др. . 2016; Boran и др. . 2011). Колочный метод подходит только для внутреннего контроля производства древесных плит. Следовательно, официальных предельных значений не публиковалось.

Фиг.10. Эмиссия формальдегида панелей из пенопласта

ВЫВОДЫ

  1. Это исследование показало, что древесностружечные плиты из пенопласта с использованием жесткого полиуретана в качестве внутреннего слоя могут быть произведены в смоделированном одностадийном производственном процессе.
  2. Исследование показало, что методы производства (методы разделения и впрыска) не оказывают значительного влияния на характеристики панели, но свойства панелей эталонных панелей и панелей, полученных с помощью моделируемого процесса, значительно различались.Значения MOR, IB и FSW были значительно выше в контрольных панелях из-за лучшего качества их поверхностного слоя.
  3. Увеличение толщины поверхностного слоя (с 3 до 5 мм) увеличивает значения MOR и FSW и приводит к значительному снижению IB. TS и WA также были увеличены за счет увеличения толщины поверхностных слоев.
  4. TS и WA были интенсивными в течение начального периода замачивания (48 ч), а затем замедлились. Результаты показали, что поверхностные слои были почти насыщенными после начального времени выдержки, что отражалось в чрезвычайно низком TS после начального времени выдержки.Однако вода все еще абсорбировалась в конце времени выдержки (до 786 ч), потому что она мигрировала в пустоты между ячейками пены.
  5. Увеличение толщины поверхностного слоя приводит к увеличению КЭ образцов. Распыляемая вода в качестве метода разделения почти вдвое увеличивает КЭ из образцов, что можно контролировать, добавляя мочевину в разбрызгиваемую воду.
  6. В целом, древесностружечные плиты из пенополиуретана показали хороший потенциал для использования в мебельной промышленности. Дальнейшие исследования в рецептуре полиуретана потребуются для улучшения структуры пены, которая, соответственно, может повлиять на характеристики панели.

БЛАГОДАРНОСТИ

Авторы выражают благодарность Иранскому национальному научному фонду (INSF) за финансовую поддержку этого исследования в рамках гранта № 93012950.

ССЫЛКИ

Аллен, Х. Г. (1969). Анализ и проектирование структурных сэндвич-панелей , Pergamon Press, Оксфорд, Великобритания.

ASTM D4672 — 12 (2012). «Стандартные методы испытаний полиуретанового сырья: определение содержания воды в полиолах», ASTM International, West Conshohocken, PA, USA.

ASTM D4699-03 (2013). «Стандартный метод испытания плотности вибрационной упаковки крупных сформированных частиц катализатора и носителя катализатора», ASTM International, West Conshohocken, PA, USA.

ASTM D4890 — 13 (2013). «Стандартные методы испытаний полиуретанового сырья: определение цвета по Гарднеру и APHA полиолов», ASTM International, Вест Коншохокен, Пенсильвания, США.

ASTM D4878-15 (2015). «Стандартные методы испытаний полиуретанового сырья: определение вязкости полиолов», ASTM International, West Conshohocken, PA, USA.

ASTM D4274-16 (2016). «Стандартные методы испытаний полиуретанового сырья: определение гидроксильных чисел полиолов», ASTM International, West Conshohocken, PA, USA.

Ашаари, З., Ли, А. М. Х., Азиз, М. Х. А., и Нордин, М. Н. (2016). «Добавление гидроксида аммония в качестве поглотителя формальдегида для древесины сесендук ( Endospermum diadenum ), компрегнированной фенольными смолами», евро. Дж. Вуд Вуд Прод . 74 (2), 277-280. DOI: 10.1007 / s00107-015-0995-9

Боран, С., Уста М., Гемуеская Е. (2011). «Снижение выбросов формальдегида из древесноволокнистых плит средней плотности, произведенных путем добавления различных аминовых соединений к карбамидоформальдегидной смоле», Int. J. Adhes. Клеи. 31 (7), 674-678. DOI: 10.1016 / j.ijadhadh.2011.06.011

Чен, З., Янь, Н. (2012). «Исследование модулей упругости сэндвич-панелей с сотовым заполнением из крафт-бумаги», Compos. Часть B-англ. 43, 2107-2114. DOI: 10.1016 / j.compositesb.2012.03.008

EN 310 (1993).«Панели на основе древесины — Определение модуля упругости при изгибе и прочности на изгиб», Европейский комитет по стандартизации, Брюссель, Бельгия.

EN 310 (2010). «ДСП. Технические условия », Европейский комитет по стандартизации, Брюссель, Бельгия.

EN 317 (1993). «ДСП и древесноволокнистые плиты — определение разбухания по толщине после погружения в воду», Европейский комитет по стандартизации, Брюссель, Бельгия.

EN 319 (1993). «ДСП и древесноволокнистые плиты — Определение прочности на разрыв перпендикулярно плоскости плиты», Европейский комитет по стандартизации, Брюссель, Бельгия.

EN 323 (1993). «Древесные плиты — определение плотности», Европейский комитет по стандартизации, Брюссель, Бельгия.

EN 320 (1993). «ДВП. Определение сопротивления осевому извлечению винта », Европейский комитет по стандартизации, Брюссель, Бельгия.

EN 717-3 (1996). «Панели на древесной основе. Определение высвобождения формальдегида — Часть 3: Высвобождение формальдегида методом колбы », Европейский стандарт, Брюссель, Бельгия.

EN 13446 (2002).«Панели на древесной основе. Определение выносливости крепежа », Европейский стандарт, Брюссель, Бельгия.

Фейфель, С., Поганиц, В. Р., Шебек, Л. (2013). «Использование легких плит для сокращения выбросов в атмосферу в деревообрабатывающей промышленности Германии — перспективы?» Environ. Sci. Евро. 25, 5. DOI: 10.1186 / 2190-4715-25-5

Грюневальд Дж., Парлевлит П. и Альтштадт В. (2015). «Производство термопластичных композитных сэндвич-конструкций; Обзор литературы », J.Термопласт. Compos . DOI: 10.1177 / 0892705715604681

Ионеску, М. (2005). Химия и технология полиолов для полиуретанов , Rapra Technology Limited, Великобритания.

Ли Дж., Хант Дж. Ф., Гонг С. и Цай З. (2014). «Высокопрочные сэндвич-панели на основе дерева, армированные стекловолокном и пеной», BioResources 9 (2), 1898-1913 гг. DOI: 10.15376 / biores.9.2.1893-1913

Линк, М., Колбич, Ч, Тонди, Г., Эбнер, М., Виланд, С., Петучниг, А.(2011). «Пены на основе танинов без формальдегида и их использование в качестве легких панелей», BioResources 6 (4), 4218-4228. DOI: 10.15376 / biores.6.4.4218-4228

Люэдтке Дж. (2011). «Разработка и оценка концепции непрерывного производства легких панелей, включающих полимерный сердечник и древесную облицовку», докторская диссертация, Гамбургский университет, Гамбург, Германия.

Петерсен, Х., Ройтер, В., Эйзеле, В., и Виттманн, О. (1972). «Zur Formaldehydeab-spaltung bei der Spanplattenerzeugung mit Harnstoff-Formaldehyde-Bindermitteln», Holz Roh Werkst. 31 (12), 463-469. DOI: 10.1007 / BF02613831

Э. Роффаэль (1993). Формальдегид из ДСП и других деревянных панелей , Институт лесных исследований Малайзии (FRIM), Куала-Лумпур, Малайзия.

Саббахи А. и Верно Ж. М. (1993). «Поглощение воды пенополиуретаном. Моделирование и эксперименты », евро. Polym. J. 29 (9), 1243-1246. DOI: 10.1016 / 0014-3057 (93)

-9

Шалбафан А., Веллинг Дж. И Людтке Дж. (2012). «Влияние параметров обработки на механические свойства сэндвич-панелей с легким пенопластом», Wood Mater.Sci. Англ. 7 (2), 69-75. DOI: 10.1080 / 17480272.2012.661459

Шалбафан А., Веллинг Дж. И Людтке Дж. (2013a). «Влияние параметров обработки на физические и структурные свойства легких сэндвич-панелей с пенопластом», Wood Mater. Sci. Англ. 7 (2), 69-75. DOI: 10.1080 / 17480272.2012.684704

Шалбафан А., Людтке Дж., Веллинг Дж. И Фрювальд А. (2013b). «Физиомеханические свойства сверхлегких пенопластовых древесностружечных плит: различная плотность сердцевины», Holzforschung 67 (2), 169-175.DOI: 10.1515 / hf-2012-0058

Шварц, Н. В., Бомберг, М., и Кумаран, М. К. (1989). «Пропускание водяного пара и накопление влаги в пенополиуретане и полиискоцианурат», ASTM STP 1039, H.R. Trechsel и M. Bomberg (ред.), Американское общество испытаний и материалов, Филадельфия, Пенсильвания, стр. 63-72.

Зонненшайн, М., Кунсе, В. (2012). «Полиуретаны», в: Энциклопедия науки и технологий полимеров , 4 th Ed., H. Mark (ed.), John Wiley & Sons, Хобокен, Нью-Джерси. DOI: 10.1002 / 0471440264.pst295

Винсон, Дж. Р. (2005). «Сэндвич-конструкции; Прошлое, настоящее и будущее »в: Sandwich Structures 7; Продвижение сэндвич-структур и материалов: материалы 7-й Международной конференции по многослойным конструкциям . О. Т. Томсен, Э. Божевольная и А. Ликегард (ред.), Ольборгский университет, Ольборг, Дания, стр. 29–31.

Зенкерт Д. (1997). Знакомство с сэндвич-конструкцией , Engineering Material Advisory Services Ltd., Крэдли Хит, Великобритания.

Статья подана: 12 июля 2016 г .; Рецензирование завершено: 4 сентября 2016 г .; Доработанная версия получена и принята: 5 сентября 2016 г .; Опубликовано: 22 сентября 2016 г.

DOI: 10.15376 / biores.11.4.9480-9495

Производство и изготовление гибкой полиуретановой пены: Национальные стандарты выбросов опасных загрязнителей воздуха (NESHAP) для зональных источников

На этой странице:

Сводка правил

Производство гибкого пенополиуретана

Окончательные национальные стандарты по выбросам опасных загрязнителей воздуха (NESHAP) запрещают использование хлористого метилена при производстве пенопласта.Площади источников изготовления гибкого пенополиуретана разрезать или склеить детали из гибкого пенополиуретана

вместе или с другими субстратами, и эти части затем используются в мягкой мебели, такой как мебель, легковые и грузовые автомобили, а также в некоторых приборах.

Эти стандарты реализуют разделы 112 (d) и 112 (k) Закона о чистом воздухе и основаны на определении Администратора, что выбросы от производства гибкой полиуретановой пены вызывают или вносят значительный вклад в загрязнение воздуха, которое, как можно разумно ожидать, представляет опасность для населения. здоровье или благополучие.Производственные объекты для формованной пены, пенопласта и производства пены, которые работают с петлевыми резчиками, должны подготовить и хранить в архиве сертификаты соответствия, подтверждающие, что на предприятии не используются запрещенные продукты на основе хлористого метилена. Местные заводы-источники должны также вести записи, подтверждающие, что используемые ими продукты не содержат метиленхлорида.

Гибкий пенополиуретан Производство:

Конечный NESHAP снижает использование хлористого метилена при производстве пенопласта.Эти операции создают гибкий пенополиуретан, используемый в мягкой мебели, такой как мебель, легковые и грузовые автомобили, а также в некоторых приборах. Эти стандарты реализуют разделы 112 (d) и 112 (k) Закона о чистом воздухе и основаны на определении Администратора, что выбросы от производства гибкой полиуретановой пены вызывают или вносят значительный вклад в загрязнение воздуха, которое, как можно разумно ожидать, представляет опасность для здоровья населения. или благосостояние.

В отношении источников плоского пенопласта правило требует ограничения выбросов и методов управления для снижения выбросов хлористого метилена из производственной линии, резервуаров для хранения, негерметичного оборудования и очистки оборудования.Пределы выбросов хлористого метилена, используемого в качестве вспомогательного вспенивающего агента (ABA), основаны на формуле, которая варьируется в зависимости от марки производимой пены. Для емкостей для хранения хлористого метилена требуются системы баланса паров или угольные слои. Практика управления требует, чтобы заводы выявляли и устраняли утечки в насосах и другом оборудовании при работе с хлористым метиленом. В частности, владельцы или операторы должны периодически проверять утечки оборудования (от ежеквартального для насосов и клапанов до ежегодного для разъемов) с использованием метода 21 EPA (40 CFR часть 60, приложение A).Утечки, которые определяются как значение 10 000 частей на миллион (ppm) или больше, должны быть устранены в течение пятнадцати дней с момента их обнаружения. Запрещается использование хлористого метилена для очистки смесительных головок и другого оборудования.

История правил

12.02.2021 — Предлагаемое правило до публикации; продление периода общественного обсуждения

11.01.2021 — Предлагаемое правило | Предлагаемые правки правила

28.03.2008 — Прямое окончательное правило с техническими исправлениями

16.07.2007 — Окончательное правило

04.04.2007 — Предлагаемое правило

Дополнительные ресурсы

Информационный бюллетень — Предлагаемые поправки к стандартам по токсичности воздуха для производства и изготовления гибкого пенополиуретана

Информационный бюллетень: Окончательные стандарты токсичности воздуха для зональных источников в семи отраслях промышленности

Просмотрите сопроводительные документы в папке списка, чтобы найти дополнительные документы, связанные с этим правилом.

Улучшенные методы производства пенополиуретана

Новые поверхностно-активные вещества — результат более экологически безопасного производственного процесса

Метиленхлорид, токсичное химическое вещество, способствующее загрязнению воздуха, недавно было исключено из использования в полиуретановой промышленности США. Это обязательное исключение не позволило производить как можно больше сортов пенопласта с использованием хлористого метилена, что привело к размещению U.С. промышленность в невыгодном конкурентном положении. Air Products and Chemicals, Inc. при финансовой поддержке AMO разработала новые силиконовые поверхностно-активные вещества, позволяющие эффективно производить весь спектр сортов пен с использованием более экологически безопасного вспенивателя CO 2 . Помимо снижения токсичности, новый процесс потребляет меньше энергии и снижает чистый выброс CO 2 , который вызывает глобальное потепление.

Проблемы при использовании жидкого CO 2 в качестве вспенивающего агента включают быстрое испарение, быстрое образование пузырьков и трудности в поддержании мелкопористой структуры в пене.Новые поверхностно-активные вещества решают эти проблемы за счет эмульгирования вспенивающего агента, тем самым сохраняя мелкие ячейки во время вспенивания. Силиконовые поверхностно-активные вещества достигли превосходных характеристик, что привело к более мелкой структуре ячеек (больший выход), более высокой высоте пучков (больший выход), лучшему градиенту физических свойств сверху вниз (консистенция продукта) и лучшей совместимости с антипиренами.

Воздействие коммерциализированной технологии
трлн.0240303
2006 2007 2008 2009 2010 2011
0103 0,082 0,087 0,103 0,117 0,129
Снижение выбросов
(Тысяч тонн)
Углерод
0,42 Углерод
0,4 2,281
NO x 0,003 0,011 0,012 0,014 0,016 0,018
9000.003 0,009 0,009 0,011 0,012 0,014
Твердые частицы 0,000 0,000 0,000 0,000

Производство пенопласта в Европе может сократиться на 80%

Европейские производители гибкого пенопласта ожидают, что производство упадет от 30 до 80 процентов по сравнению с нормальными условиями в течение следующих нескольких недель из-за последствий кризиса с коронавирусом и национальных ограничений.

Это может привести к закрытию новых заводов независимо от национальной политики, предупреждает EuroPUR, европейская ассоциация производителей блоков из гибкого пенополиуретана.

Ассоциация сообщила, что ее исследование показало, что все специализированные компании по производству гибких пеноматериалов, поставляющие продукцию для автомобильной промышленности, закрылись. Большинство заводов, поставляющих мебель и рынки матрасов, закрыты в южной Европе и в северной Европе, операции намного ниже, чем обычно.

Компании, которые продолжают работать, сосредотачивают свою продукцию на медицинских матрасах и онлайн-продажах.

Но EuroPUR предупреждает, что «эти объемы далеко не компенсируют объемы производства, потерянные для других приложений».

«Среди компаний, производящих медицинские матрасы, некоторые начинают сообщать о трудностях с поиском покрытий. Некоторые производители оборудования сообщают о трудностях с поиском запасных частей из стран, находящихся под запретом», — говорится в сообщении группы.

Эта нехватка, вероятно, будет расти в ближайшие недели, поскольку «наличие рабочей силы и более строгий и жесткий контроль при пересечении границы… могут вызвать задержки в доставке.«

EuroPUR опросил более 30 компаний по всему континенту для получения этого снимка результатов:

  • Франция : Все заводы закрыты из-за отсутствия спроса.
  • Испания и Португалия : Некоторое производство медицинской пены открыто в Испании, но ожидается, что большинство заводов будет закрыто до середины мая. Португалия закрыта, компании надеются вновь открыться в середине апреля.
  • Турция : Большинство заводов по производству пенополиуретана закрыты как минимум до 6 апреля.
  • Италия : Единственные действующие установки по производству пенополиуретана привязаны к медицинским программам. Остальные закрыты.
  • Россия : Закрыто. 28 марта в России начался недельный национальный оплачиваемый отпуск, за исключением медицинского сектора и предприятий, производящих непрерывную продукцию в химической и нефтеперерабатывающей отраслях.
  • Польша : Спрос на экспорт составляет 50 процентов от обычного, а апрель может составить 20 процентов от обычного. Заводы могут работать вместе, поскольку компании принимают меры предосторожности.Неясно, смогут ли компании по производству пеноматериалов получить выгоду от финансовой помощи для фирм в стране.
  • Венгрия, Чешская Республика, Хорватия, Словения, Словакия : у всех есть компании, работающие с гораздо меньшими мощностями.
  • Греция и Кипр : Работа с значительно меньшей производительностью.
  • Румыния и Болгария : Работа с гораздо меньшей производительностью
  • Скандинавия и Прибалтика : Заводы могут работать, и сокращение производства менее драматично, чем в других регионах.
  • Великобритания и Ирландия : Все заводы в Великобритании открыты и работают с пониженной производительностью. Ирландские предприятия продолжают производить медицинские пенки.
  • Украина, Беларусь, Казахстан : Заводы открыты, но работают с пониженной производительностью.

Производство пены в США

В конце января мы сообщили, что международная стальная дефицит начал сказываться на производстве Draper и других американских компаний.

Хотя по-прежнему существует неопределенность в отношении мирового спроса на сталь превышение предложения, мы считаем, что худшее уже позади, и мы пережили ситуация, как и следовало ожидать. У нас также есть планы, что мы полагаем, поможет нам устранить будущие перебои в поставках.

Однако другая ситуация с поставками сейчас влияет на тренажерный зал. изготовление. Дефицит пенопласта и сырья для изготовления пен с позднего времени. Осень 2020 года начинает сказываться на производстве настенных и других материалов для спортзалов.

Изначально дефицит был привязан к COVID-19, так как нефтеперерабатывающие заводы сокращение производства и укомплектования персоналом. Это было ответом на снижение спроса за газ и нефть из-за людей, работающих из дома, а не путешествующих.

Сильный зимний шторм, обрушившийся на Техас и побережье Персидского залива. в феврале только усугубили ситуацию, повредив электричество и воду. инфраструктура и остановка нефтеперерабатывающих заводов. Эти отключения прекратились производство газа и нефти, а также побочных продуктов, используемых при производстве пены.

Нефтеперерабатывающие заводы

медленно возвращаются в строй, и, согласно недавнему S&P Global blog , сообщению , может потребоваться оставшаяся часть 2021 года, чтобы производство могло удовлетворить и без того высокий спрос. Дефицит затрагивает многие отрасли:

  • Производство сидений для легковых автомобилей и грузовиков — остановка сборочных линий
  • Производство мебели
  • Производство матрасов и постельных принадлежностей
  • Производство спортзалов

Поставщики и производители пенопласта начали ссылаться на то, что называется «форс-мажор».”Это позволяет поставщикам временно приостановить договорные обязательства из-за непредвиденных обстоятельств. Кроме того, большие выделения пены идут в автомобильную и мебельную промышленность, делая ее ровной. труднее найти надежный источник питания.

Draper тесно сотрудничает с несколькими поставщиками, чтобы попробовать и соответствуют требованиям, но мы испытываем значительные задержки доставки, и во многих случаях качество получаемой нами пены намного ниже ожидания.

Хотя этот дефицит существенно не повлиял на пену используется для прокладок класса A огнестойкости, мы ожидаем, что это произойдет в самое ближайшее время. будущее.

Мы внимательно следим за ситуацией и будем держать клиенты обновляются по мере поступления информации. Однако ситуация нестабильна, и мы часто получаем очень короткие уведомления о проблемах с поставками.

Между тем, если у вас есть какие-либо вопросы, вы можете обратиться к своему представителю Draper. Щелкните здесь , чтобы перейти на нашу страницу контактов.

Для получения дополнительной информации и подробностей о нехватке пены вы можете просмотреть исходные материалы по адресу:

Автомобиль с водителем

Ваш источник Новости

Everchem

Yahoo! Новости

Что такое пенополиуретан? — Ассоциация пенополиуретана

«Булочка» из пенопласта поднимается вверх по мере продвижения по производственной линии.

Пену

чаще всего производят в виде больших булочек, называемых плитами, которым позволяют затвердеть в стабильный твердый материал, а затем разрезают и формируют на более мелкие кусочки различных размеров и конфигураций. Процесс производства плит часто сравнивают с подъемом хлеба: жидкие химикаты выливаются на конвейерную ленту, и они сразу же начинают вспениваться и поднимаются в большую булочку (обычно около четырех футов высотой) по мере движения вниз по конвейеру.

Крусель форм для изготовления деталей из пенопласта.

Сырье для пенопласта также можно заливать в алюминиевые формы, где затвердевшая пена принимает размер и форму формы. Формование позволяет изготавливать изделия из пенопласта такой формы, которую трудно получить при изготовлении пенопласта из булочки из плоских плит. В процессе формования компоненты из пенопласта могут соединяться с другими частями, например, с металлическим каркасом. Одним из примеров этого является подголовник автокресла. Из-за высоких первоначальных затрат на производство пресс-форм формование обычно резервируется для больших производственных циклов.Формованная пена часто используется в салонах автомобилей, в деловой мебели и спортивном инвентаре.

Процессы производства плит и формованного пенопласта описаны в учебном пособии по производству пенопласта PFA.

Основное сырье для FPF часто дополняется добавками, которые придают желаемые свойства. Они варьируются от комфорта и поддержки, необходимых для мягких сидений, до амортизации, используемой для защиты упакованных товаров, и до долговременной стойкости к истиранию, необходимой для ковровой подушки.

Аминные катализаторы и поверхностно-активные вещества могут изменять размер ячеек, образующихся во время реакции полиолов и изоцианатов, и тем самым изменять свойства пены. Добавки также могут включать антипирены для использования в самолетах и ​​автомобилях и антимикробные средства для подавления образования плесени на открытом воздухе и на море.

Устройство для резки петель

После производства пенопласта можно придать ему сложную форму. Основные инструменты производства пенопласта — вертикальные ленточнопильные станки и горизонтальные продольно-резательные станки — были адаптированы из деревообрабатывающего оборудования.Благодаря своей гибкости пену можно прикрепить к вертикальному колесу с режущими лезвиями, этот процесс называется разрезанием петель.

Гофрированная пена

Производители также используют лазеры, горячую проволоку, струи воды, волновые свертки и другие технологии. Пену можно сжимать, так как ее разрезают, создавая эффект «извитой» пены, которая иногда используется в наматрасниках.

Полиуретан также можно комбинировать с другими материалами, такими как нетканые основы, сетка, ткань и волокна.Методы склеивания включают склеивание пламенем, склеивание горячей пленкой, адгезию горячим расплавом и порошковое ламинирование, где порошковый клей используется для связывания пены с подложкой посредством процесса нагрева. Обшивка потолка (мягкий потолок в салоне автомобиля) обычно состоит из нетканого материала, ламинированного на тонкую пенопластовую основу с использованием склеивания пламенем.

Сетчатая пена

Другие процессы изменяют структуру и эксплуатационные характеристики пены. Одно из самых драматических и очень полезных изменений — ретикуляция.Ретикуляция влечет за собой разрушение многих стенок ячеек пены, чтобы обеспечить большую пористость и воздушный поток. Этого можно достичь, подвергая пену контролируемому взрыву газовой смеси в закрытом реакторе или подвергая пену воздействию щелочной ванны. Сетчатая пена часто используется в системах фильтрации воздуха и жидкости, а также в качестве антипомпажной мембраны в топливных баках.

Подушка для ковровых покрытий

Одна из наиболее важных с коммерческой точки зрения формулировок пены — переработка обрезков пены в приклеенную ковровую подушку.Пенопласт различных типов измельчается и помещается в технологическую установку с химическим клеем. Смесь нагнетается под давлением и впрыскивается паром, чтобы сформировать большой цилиндр или блок пены. Затем этот материал «отслаивается» до нужной толщины для использования в ковровых подушках. Связанная пена — самый популярный тип ковровых подушек, занимающий более 80 процентов рынка.

Свойства пены можно измерить и очень точно определить, чтобы выбрать нужный сорт пены для правильного применения.Характеристики пены обсуждаются на нашей странице «Характеристики пены», а методы испытаний, используемые для определения пены, охватываются отраслевыми стандартами.

Автопроизводители сталкиваются с возможными задержками производства из-за … пены?

2020 год, безусловно, был тяжелым для всех, но 2021 год пока не совсем покорил сердца многих в Соединенных Штатах. Политическая нестабильность и сохраняющаяся обеспокоенность по поводу COVID-19 с января быстро превратились в февральскую зимнюю погодную катастрофу в южных штатах, в результате чего отключили электричество по всему региону.Значительная часть нефтеперерабатывающих заводов в США находится в этом регионе, и нефть используется не только в качестве топлива.

Нефтехимические заводы расположены по всему югу, а производство пеноматериалов пострадало от арктического взрыва в середине февраля, согласно Automotive News . Масло требуется для изготовления пенополиуретана, используемого в автомобильных сиденьях, и анонимный источник сообщил новостному агентству, что заводы, производящие пенопластовые вставки, могут быть закрыты уже 8 марта. В частности, оксид пропилена является побочным продуктом процесса очистки, необходимого для пену, и, поскольку некоторые нефтеперерабатывающие заводы все еще испытывают проблемы, в линии поставок наблюдается нехватка.

Конечно, есть и другие места по всему миру, где нефть перерабатывается, но, похоже, вопрос в том, можно ли задействовать этих новых поставщиков достаточно быстро, чтобы избежать остановки производства. В статье цитируются другие источники в автомобильной промышленности, утверждающие, что производство пены может быть затронуто в середине месяца, и в конечном итоге это может привести к проблемам с производством автомобилей в ближайшие недели. Или, возможно, производство пены может снова увеличиться, если все необходимые ингредиенты будут найдены вовремя.

Проблема пены — еще одна часть производственной головоломки, которая остается отрывочной, поскольку мы приближаемся к концу первого квартала 2021 года. Глобальная нехватка компьютерных микросхем уже сказывается на автомобильной сфере, при этом GM сталкивается с временными остановками производства в несколько раз. растения. Производство автопроизводителя в 2021 году может в конечном итоге упасть более чем на 200000 автомобилей из-за нехватки чипов, и это не учитывает постоянные проблемы с цепочкой поставок, которые испытывают все бренды из-за продолжающейся пандемии COVID-19.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *